
DSP-93 Programming Guide Page 1 of 30 First Printing 6/1/95

T
A
P
R

Tucson Amateur Packet Radio
8987-309 E. Tanque Verde Rd #337
Tucson, Arizona • 85749-9399
Office: (817) 383-0000 • Fax: (817) 566-2544
Non-Profit Research and Development Corporation

DSP-93DSP-93DSP-93DSP-93DSP-93
DSP-93 Programming Guide

© 1995 Tucson Amateur Packet Radio Corporation. June 1995.
Contributions by Ron Parsons, W5RKN, Don Haselwood, K4JPJ, and Bob Stricklin, N5BRG.

Reproduction or translation of any part of this work beyond that permitted
by sections 107 or 108 of the 1976 United States Copyright Act (or its legal
successor) without the express written permission of Tucson Amateur Packet
Radio Corporation is unlawful except as noted below. Requests for
permission to copy or for further information should be addressed to Tucson
Amateur Packet Radio Corporation. Except as noted above, permission is
hereby granted to any non-profit group or individual to reproduce any portion

of this document provided that: the reproduction is not sold for profit; the
intent of the reproduction is to further disseminate information on Amateur
Packet Radio; the reproduction is not used for advertising or otherwise
promoting any specific commercial product; full credit is given to Tucson
Amateur Packet Radio Corporation (including address) as the original source
of information; and Tucson Amateur Packet Radio Corporation is notified
in writing of the reproduction.

The information contained in this document has been checked and is believed to be entirely reliable.
However, no responsibility is assumed for inaccuracies. Tucson Amateur Packet Radio Corporation
(TAPR) reserves the right to make changes in any products to improve reliability, function or design
without obligation to purchasers of previous equipment. TAPR does not assume any liability arising
out of the application or use of any product or circuit described herein; neither does it convey license
under its patent rights or the rights of others.

Introduction . 2
Books to Read . 2
Theory of Operation of DSP-93 3

DSP-93 Design . 3
Code Development . 3
Memory Map . 3
Memory Mapping . 4
Internal Memory (TMS320C25) 4
External Memory . 4

The DSP-93 Monitor . 6
DSP-93 Firmware - Monitor Operation 6
Sine/Cosine table . 8

The Parts of a DSP-93 Program 10
Header . 10
The Include Files . 10
Memory Location Equates 11
Program Constant Equates 11
Program Origin . 11
Interrupt Vectors . 11
Initialization of the Math, Serial Model 12
Initialization of the AIO 12
Initialization of the DSP 14
Handling Interrupts . 14
Serial Port IO and Exiting to the Monitor . . . 14

Wait Functions . 15
Defining Data Tables 15
Using Pre-defined Data Tables 16
The End . 16

AIO Port Programming 17
Setting the AIO conversion frequency 17

IO Port Programming 19
Which Port does What 19
Hardware Port IO Assignments 20

Debugging DSP-93 Programs 23
Debug functions in the Monitor 23
Debugging using LOC.ASM 24

Monitor IO Routines . 26
GET4HEX, GETVAL16, GET2HEX,
GETCHAR, HEXOUT, INBIT, OUTBIT . . 26
OUTBIT2, PRVAL08, PRVAL16, RESET,
SD_CRLF, SD_STR, SP1 through SP10
MWAIT1 and MWAIT_A 27
MP_BLK_MV, PM_BLK_MV 28

Monitor Memory Usage 29
Assembling a DSP-93 Program 30

How to assemble under DOS 30
How to assemble under Windows 30
How to assemble under MacOS 30

DSP-93 Programming Guide Page 2 of 30 First Printing 6/1/95

Intr oduction
Please send all corrections to Ron Parsons at
w5rkn@amsat.org. If a topic relevant to DSP-93
programming is not covered, please feel free to write
a draft and submit it for the next revision.

This purpose of this guide is to assist potential
programmers new to the TAPR/AMSAT DSP-93
environment insight into the tools and techniques
available when developing for the DSP-93. TAPR
maintains an active Internet site that supports the
DSP-93 project.

FTP: TAPR maintains an ftp site at ftp.tapr.org .
Updates and archive material relevant to the DSP-93
can be obtained via anonymous ftp from the directory
/tapr/dsp93.

File Request: You can get copies of all past messages
distributed on the dsp-93@tapr.org list by sending
mail to ‘listserv@tapr.org ’, subject of ‘list ’,
message of ‘index dsp-93 ’. This message will
request a listing of all files in the dsp-93 mail archive.
To request a specific month, send mail again to
‘listserv@tapr.org ’, subject of ‘request ’,
message of ‘request dsp-93 filename ’, where
filename is the name of the file in the dsp-93 area you
want to request (i.e., nov.94).

Listserv Mail Group: You can join the DSP-93 listserv
by sending mail to 'listserv@tapr.org ', subject
of 'l ist ', message of 'subscribe dsp-93
First_Name Last_Name '. This will subscribe you
to the mail list.

Web: You can find the DSP-93 web page on:
http://www.tapr.org

Books to Read
Any introduction regarding DSP-93 programming
must begin with discussing how to locate and secure
reference materials. The first step is to locate your
local Texas Instruments distributor and call them.
Local distributors have been known to give free access
to their literature room. Books that you should be
looking for include:

• TMS320C2x User’s Guide By Texas
Instruments; Document # SPRU014C
This book covers the TMS320C25 DSP chip used
in the DSP-93. It covers the chip’s electrical
properties, memory models, interrupt
processing, and, of course, the instruction set.

• Linear Circuits; Data Conversion, DSP Analog
Interface, and Video Interface; Data Book
Volume 2 By Texas Instruments; Document #
SLYD004A.
This book covers the TLC32044CN AIO chip
used in the DSP-93. It covers the chip’s electrical
properties, configuration, etc.

• Digital Signal Processing Applications with the
TMS320 Family; Theory, Algorithms, and
Implementations

Volume 1 Document # SPRA012A
Volume 2 Document # SPRA016
Volume 3 Document # SPRA017

These books cover various DSP algorithms
which may or may not be useful to you.

• Digital signal processing with the TMS320C25
Chassaing, Rulph, published 1990 by Wiley, New
York 464 pg
ISBN 0471510661

• Digital Signal Processing: A laboratory
approach using PC-DSP. Alkin, Oktay,
published 1994 by Prentice-Hall, Inc.
ISBN 0-13-328139-6
An introduction to Digital Signal Processing
techniques. Comes with a DOS program which
can compute FIR coefficients, among other
things.

DSP-93 Programming Guide Page 3 of 30 First Printing 6/1/95

Theory of Operation of DSP-93
DSP-93 Design
The TAPR/AMSAT DSP-93 is designed to provide
radio amateurs the wonderful capabilities of Digital
Signal Processing in a stand-alone low-cost design.
Not just limited to one mode, the DSP-93 can support
data, audio, and video modes with the proper
software.

The basic system includes a DSP engine board and a
radio/computer interface board. The DSP Engine,
contains the TMS320C25 DSP, 32K by 16 bits of
program and data memory - upgradable to 64K, the
clock circuitry (40MHz) and some programmable
array logic for system I/O. The Radio/Computer
Interface Board, contains two eight pin female mini-
DIN connectors for radio interfacing. Incoming radio
signals pass through a voltage divider to establish the
initial levels, then through an eight channel multiplex
chip. The multiplex chip then feeds the single A/D
input with either of the radio inputs or one of the six
auxiliary inputs. The Texas Instruments TLC32044
Analog I/O chip is used to sample and update the
input signal at a rate of up to 45K operations per
second and includes aliasing filters. This board also
communicates with your computer at speeds up to
19.2K baud using a serial connection and, with special
programming, this can be increased to the maximum
rate attainable by a 16C550 and your computer.

The modular design of the DSP-93 allows for either
of these boards to be replaced with future boards
designed for any number of unique applications. It’s
sort of like adding a new application card to a PC
without redesigning the complete PC. The following
block diagram shows how the DSP-93 is interfaced.

DSP Engine
TMS320C25

40Mhz

Radio/Computer
Interface

20pin Male
TNC Header

DSP-93
Terminal
Node
Controller
Needed for
AX.25 Framing

Radio 1
Interface

Radio 2
Interface

Radio 1
Transmit
Receive
PTT
Freq Up/Down

Radio 2
Transmit
Receive
PTT
Freq Up/Down

19.2K baud
Serial Port

Personal
Computer
Computer
controls DSP-93.
Data to PC from
some applications

Code Development
A low cost shareware assembler, TASM TMS320-25
Assembler, is available for code development. A copy
of the shareware version of this assembler is included
with the DSP-93 kit. If you use this assembler, please
pay the small shareware fee.

Memory Map
The following memory map exists after you have
entered a ‘G’ command from the Monitor. The ‘G’
command is executed after a program download
using DSPLOAD.EXE or the windows program
D93WE. The unit is operating entirely in static RAM
and in the high speed mode at this point.

 PROGRAM DATA

 0000 Interrupts 0000 TMS320C25
 and MEMORY MAPPED
 Reserved REGISTERS
 001F ————— 0005 ——————
 Reserved
 0060 ——————
 On DSP Block B2
 007F ——————
 Reserved
 For Monitor 01FF ——————
 0200 ——————
 On DSP Block B0
 02FF ——————
 0300 ——————
 On DSP Block B1
 03FF ——————
 0400 ——————
 Page 8 Data Memory
 0FFF ——————
 1000 TINT
 1002 RINT
 1004 XINT
 1006 TRAP
 1008 ——————

 User Program User Data
 Memory Space Memory Space

 FFFF —————— FFFF ——————

DSP-93 Programming Guide Page 4 of 30 First Printing 6/1/95

Memory Mapping
[Don Haselwood, K4JPJ]

The purpose of the following is to provide some detail
as to how the DSP-93 implements memory in
conjunction with the TMS320. Integral to this is a
scheme for providing a Monitor in EPROM and high/
low speed operation.

The Harvard architecture used in the TMS320 is quite
different from the typical microprocessor. There are
two memories utilized during one instruction—data
and program. Until experience is gained working with
this architecture it is easy to forget this basic principle.
There are two memories active at the same time. By
having two memories, a single instruction can load a
word out of program memory and do something with
a word out of data memory, all within the same cycle.
It facilitates implementing filters and other digital
signal processing algorithms. For example, stepping
down a table of constants, such as filter coefficients
and doing a multiply and add to accumulator with a
data array of signal values can be accomplished at
full machine cycle speed with no overhead for
instruction fetches, nor double accessing of a single
memory.

Program and data memory can change, and keeping
track of “what is which” is needed. How this is done
is largely a function of how the DSP-93 design uses
the TMS320. Therefore, the TMS literature will not
give the whole story necessary to understand the

DSP-93. Various clues are given in the DSP-93 docs
and literature, but this tries to bring it together into
one place. The following details show how memory
is mapped under various conditions.

The DSP-93 has a number of physical memories. Some
memory is internal to the TMS320C25 chip, and other
is external. The tables below outline the physical
memories, as well as the conditions which determine
whether they are used by the TMS320C25 as program
or data. Following each table is a discussion of how
the configuration is organized and used.

Internal Memory (TMS320C25)
Label Can be configured as Size
B0 Data or program * 0100h
B1 Data only 0100h
B2 Data only 0010h

* B0 is in data mode after a hardware reset, Monitor
reset, or CNFD instruction. It is program memory after
a Monitor ‘G’ command, or CNFP instruction.

External Memory
How the external memories are configured depends
on the state of the XF bit. Hardware reset turns the
XF bit ON, as will the SXF instruction. RXF turns it
OFF. SRAM U104, U105, U110, and U111 come with
the basic kit and provide two 32K memories (one
program and one data). Four more SRAM IC’s will
raise the amount to 64K for both program and data
memory.

IC number XF = ON(1) “Slow speed” XF = OFF(0) “Fast speed”
SRAM ———————————————————————— ————————————————————————
U104, U105 Data 0000 - 7FFF(2) Prog 0000 - 7FFF(2)
U106, U107 Data 8000 - FFFF Prog 8000 - FFFF(3)

U108, U109 N.A. - Data 0000 - 7FFF(2)
U110, U111 N.A. - Data 8000 - FFFF

EPROM
U102, U103 Prog 0000 - 7FFF(2) N.A. -

(1) - XF line/bit is ON after a hardware reset, after a Monitor reset command (‘R’), or after a SXF
instruction. RXF turns the bit off, and it is also turned off after a Monitor ‘G’ command.

(2) - Data addresses below 0400h access internal memory in the TMS320 and therefore are not available
for use in the external memory.

(3) - Addresses FF00h - FFFFh access internal memory, B0, when B0 has been configured as program
memory (normally after a Monitor ‘G’ command).

DSP-93 Programming Guide Page 5 of 30 First Printing 6/1/95

Note that all memory is organized as 16 bit words,
and not 8 bit bytes. Address 1000h addresses a 16 bit
word, and address 1001h addresses the next 16 bit
word. (In a byte oriented machines such as the PDP-
11, which can address 16 bit words or 8 bit bytes, the
address 1001h would address the second byte of a
word, thus making 16 bit word addresses, 1000h, 1002,
1004h, etc.—such is NOT the case here). Along the
same lines remember that the accumulator is 32 bits
long so be careful about unintended sign extension.

Internal memory, B0, is configured to the data mode
after a hard reset. Also, the Monitor in EPROM
configures B0 to data when a ‘R’ (reset) command is
executed, and to program when a ‘G’ command is
executed. Switching B0 modes is done with the
instructions CNFP and CNFD, (set program, and set
data, respectively), or the hardware reset that switches
it to data.

External memory is switched via the XF line out of
the TMS320. This line is controlled by the XF bit. A
hardware reset sets this bit high. The bit can be set/
reset by the instructions SXF/RXF, respectively.

When the XF bit is high, such as after power-up reset,
the EPROM, which contains the Monitor programs,
is active as program memory. This makes it possible
to get the machine running with something intelligent.
Since inexpensive EPROM is slow, the XF also selects
a low speed mode (divides the 40 MHz clock by two,
or four depending on jumper J100). In slow speed
the processor is slow enough to accommodate the
EPROM. XF also makes external memories U104,5,6,7
switch to data mode and U108,9,10,11 not accessible.
This arrangement allows the EPROM Monitor to load
program into data memory (U104,5,6,7 and B0). This
switching is necessary since the TMS320 does not
execute instructions which store anything into
program memory; the downloaded program is placed
into the DSP-93 as data.

With the Monitor program executing out of EPROM,
the usual step is to download a program from a
general purpose computer. The program being
downloaded is stored as data, in data memory, which
is U104,5,6,7 at this time. Upon completion of the
downloading, the general purpose computer issues
a ‘G’ command which causes the DSP-93 Monitor to
turn off the XF bit. This switches U104,5,6,7 from data
memory to program memory. The Monitor also jumps
to location 1008h (of program memory) to start the
program that was just loaded (into what was data
memory).

With XF low, program normally runs out of external
SRAM, U104,5,6,7, using U108,9,10,11 for data storage.
B0, B1, and B2 can also be used. B0 as stated before
can be configured either as data or program, though
remember that the Monitor sets it to program after
the loading process completes and a ‘G’ command is
given. Operating out of internal memory is somewhat
faster than external memory and may be needed for
time critical operations. The TMS320C2x User’s Guide
shows timings for instructions according the memory
combination being used.

Since B0 can be switched between data and program,
it can be loaded with a program which can be
executed. During the normal program downloading
process, B0 is configured as data, so it can be loaded
with program no differently than U104,5,6,7. The
addresses where the program loads of course must
be correct. If the program has code which was
preceded by .ORG directive with the address so that
the code assembles in locations 0200h - 02FFh, the
loader will put that code into B0. Some code .ORG’ed
to 1000h is also needed. When the loading process
completes, the Monitor does a ‘G’ command and
jumps to 1008h. The program at 1008h can then jump
to B0 and execute the code which was loaded. When
B0 is configured as program, it is no longer at locations
0200h - 02FFh, but occupies FF00 - FFFFh. Therefore,
the code assembled at 0200h - 02FFh must be capable
of executing properly when moved to locations FF00h
- FFFFh. The jump from the program in U104,5,6,7
will be to FFxyh, if the beginning of the code loaded
into B0 is 02xyh.

External memory is not accessed for data addresses
below 0400h, as these are reserved for the TMS320.
Also, FF00h - FFFFh of program memory is not
accessed when B0 is configured as program.

Note that some addresses are really registers within
the TMS320, such as locations 0 and 1 which are used
to load/receive the serial shift register data to/from
the AIO chip. The TMS manual covers these in detail.

External memory, (prog, fast), 0400h - 1000h holds
the Monitor which is used when in the fast mode
(since the Monitor in the EPROM is only available in
the slow mode). If these locations are blasted, such as
with a Monitor Fill command, the Monitor is lost and
a hard reset is required.

DSP-93 Programming Guide Page 6 of 30 First Printing 6/1/95

The TMS320 cannot load and store (i.e. move) data
from program memory to program memory. Data-
to-data memory can be accomplished, as well as
program-to-data and data-to-program. Therefore is
not likely that a runaway program will blast the
Monitor stored in 0400h - 1000h.

The Monitor uses B0 during the transition from
EPROM to the SRAM or from low speed operation
to high speed. It is not possible to load the entire 256
words with program, or Fill it via the Monitor. If a
reset command is executed by the Monitor, locations
0200h - 0275h are overwritten with “stuff” from the
Monitor, wrecking what might have been
downloaded into B0. As long as a Monitor reset does
not occur between the loading of B0 and utilization
of B0 (either as data or program), then the full page
can be used. Otherwise, only those locations not used
by the Monitor can be used (0276h - 02FFh).

The DSP-93 Monitor
To use the Monitor, you must have the DSP-93
connected to a computer using a terminal interface
program, the D93WE windows program or the DSP-
93Control application for the Macintosh. You should
have your computer set for 19200 baud with 8 data
bits, 1 stop bit, and no parity. If this is all in place you
will see the asterisk (*) when you power up or press
reset.

DSP-93 Firmware - Monitor Operation
When the DSP-93 is powered up the firmware
Monitor takes control of the unit. The Monitor
conditions the TMS320C25 and then begins polling
the serial data link looking for single character
instructions to execute. The action taken by the
Monitor during each operation will be explained in
more detail here.

After initialization is complete, the Monitor enters a
polling loop checking the serial port for an input
character. Acceptable input characters are; ?, A, D, F,
G, H, J, L, M, P, R, S, and T. The Monitor is not case
sensitive so the lower case of all the above also
applies. An entry of ‘?’ will bring a listing of the
Monitor version and the commands as shown here;

*?
DSP-93 TAPR / AMSAT REV 2.17
Copyright <c> 1995 by Tucson Amateur Packet
Radio Corporation.

A-AR REGISTERS
D-DUMP MEMORY
F-FILL MEMORY
G-FLIP & RUN PROGRAM @ 1008h
H-INTEL LOADER HIGH BITS
J-JUMP TO XXXX & RUN
L-INTEL LOADER LOW BITS
M-MODIFY WORD
P-FIRMWARE PROGRAMS
R-RESET
S-SHOW WORD
T-TEST

Let’s review the operation of each of the commands
in order. An example will be shown when applicable
for the command. Also note the results of the
command will vary depending on the state of the
DSP-93 or previous commands issued.

A-AR REGISTERS
This command displays the value contained in the
eight 16 bit registers on the TMS320C25. The first
register is used by the Monitor and so the value in
register zero will normally be 0400 hex. This is what
you should see when you enter ‘A’ after power up.

*a 0400 0ECD FFFF FFFF FFFF FFFF FFFF 0AFF

D-DUMP MEMORY
The dump memory command displays the specified
block of program or data memory. The TMS320C25
uses a Harvard Architecture memory format which
means it has separate 16 bit memory for program
space and data space. Therefore when you are
working with memory you must specify whether you
want to use program or data memory. Monitor
commands use a ‘P’ for program and a ‘D’ for data
memory. After entering a ‘D’ for DUMP and a ‘P’ or a
‘D’, you enter the hex starting address and the ending
address of the memory block you want to see. The
Monitor is not very forgiving so you must enter
exactly four hex characters a space and four more hex
characters. The memory contents will then be
presented in block form with one 16 bit data address
and eight 16 bit data values on each line. This will
continue throughout the range specified. The last
block may run beyond the ending value you specified
to round out a block of eight values. When you are
operating the DSP-93 in the low speed mode memory

DSP-93 Programming Guide Page 7 of 30 First Printing 6/1/95

dumps for program memory will be the contents of
the EPROM and the scratch pad on the TMS320C25
and the data memory will come from the first bank
of static RAM, U104 through U107. When you switch
to the HIGH speed mode, memory dumps will come
from the static RAMs U104 through U107 for program
and from U108 through U111 for data.

*d [P]ROGRAM or [D]ATA
p
 XXXX XXXX
 1000 1010
1000 FF80 0476 FF80 0476 FF80 0476 FF80 0476
1008 C808 CA40 6060 E760 FF80 0530 FF80 1008
1010 FF80 10AF FF80 10E8 FF80 1008 CE01 C808

*d [P]ROGRAM or [D]ATA
d
 XXXX XXXX
 1000 1050
1000 FF80 0476 FF80 0476 FF80 0476 FF80 0476
1008 C808 CA40 6060 E760 FF80 0530 FF80 FFFF
1010 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
1018 0101 0202 4800 2000 0102 0220 002A 020A
1020 0800 0041 0040 8025 0000 0000 0100 0004
1028 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
1030 FFDF FFF7 FFFF FFFF FFFF FFFF FFFF FFFF
1038 035C 0040 0000 0000 8000 4000 0003 0001
1040 0001 8000 0041 4940 6200 0200 0003 0100
1048 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF
1050 FFFF FFFF FFFF FFFF FFFF FFFF FFFF FFFF

F-FILL MEMORY
The Fill memory command works like the data dump
command except in this case you are filling memory
with a 16 bit hex value. If you write over any program
areas you will kill the Monitor. The reset switch will
restore order.

*f [P]ROGRAM or [D]ATA
p
 XXXX XXXX XXXX
 2000 2200 fe50

*f [P]ROGRAM or [D]ATA
d
 XXXX XXXX XXXX
 3000 3300 fe60

G-FLIP & RUN PROGRAM @ 1008h
The ‘G’ command is used after you have loaded a
program and you are ready to run it. The details of
this command are covered in the software
development sections of this document. For now you
need to know the ‘G’ command will cause the
DSP-93 to began executing the program loaded in

memory. The Flip referred to here means that the
Monitor is flipping from the EPROM over into the
static RAM.

H-INTEL LOADER HIGH BITS
This is an Intel style hex loader for placing bits in data
memory. To execute properly the DSP-93 must be in
the LOW speed state. I called it Intel style because
Intel loaders normally handle only 8 bit code. The
same concepts are used however. After receiving the
‘H’ command, the DSP-93 is expecting data for the
upper 8 bits of the 16 bit words. The data is expected
in the following sequence; count (8 bits), byte address
(16 bits) (the byte address is twice the word address),
Intel hex code command (8 bits), some quantity
(count) of data (8 bits) and finally an 8 bit checksum.
Here are a few typical lines of a loadable file:

:08000000FF04FF04FF04FF04EC
:0E002000FF04FF0AFF0AFF04C8CA60E7FF04DE
:20042000FF04C8CA60FE05CA60FE05CA60FE05FE05FF04CECECEC8CA60C855CE55D004D024

If no checksum errors are found the data is placed
into memory in the address locations specified. If an
error occurs a checksum error message is transmitted
via the serial port. When the loader is finished, control
is returned to the Monitor.

J-JUMP TO XXXX & RUN
JUMP and run executes in the same manner as the
‘G’ command except execution begins at the specified
address. The interrupt vectors must still be in place if
you are going to allow interrupts to occur.

L-INTEL LOADER LOW BITS
The ‘L’ command works exactly like the ‘H’ command
except it deals with the lower 8 bits of the 16 bit words.

M-MODIFY WORD
This command is used to change the contents of a 16
bit memory location in program or data memory. The
command can be used to force the D/A output of the
TLC3204X to a particular value. This can be done by
modifying location 0001. D/A changes will only occur
if the AIO chip is active.

*m [P]ROGRAM or [D]ATA
d
 XXXX
 2000 FE50
 fddd

DSP-93 Programming Guide Page 8 of 30 First Printing 6/1/95

P-PROGRAM
This command is used to launch one of the firmware
programs located in the DSP-93 EPROM. To use the
command, hit reset, then enter a ‘P’ and a ‘?’ to see
the list of programs available. Then enter your
selection. The code for the application will be loaded
into the DSP-93 and execution of the code will begin.
If you do not want to run a program after entering
the ‘P’, use the escape key or reset. The list of available
programs may change from version to version.

R-RESET
Entering an ‘R’ will cause the DSP-93 to go through a
soft reset. The results of this should be equivalent to a
hardware reset. If you have entered the ‘G’ command
and you are working in static RAM, the DSP-93 will
bounce back to the EPROMs just as if you hit the reset
button. Some of the areas in data RAM are initialized
during a reset cycle. For example some code to keep
the DSP-93 Monitor alive is placed from 1000h to
100Ch. This is mentioned in case you want to use the
dump command to look at a program you just loaded
after entering a reset.

S-SHOW WORD
This command is used to display the contents of a
particular memory location. It can be used to check
the current state of the A/D output for example by
checking location 0000h. Once again, the AIO chip
must be active for direct A/D access.

*s [P]ROGRAM or [D]ATA
d
 XXXX
 2000 FDDD

T-MEMORY TEST
This command tests the current data memory for
errors. The routine starts at 0FFFFh. If it gets an error
there, it assumes you do not have the upper 32K of
memory installed and the routine jumps to location
7FFFh and continues testing from there. The memory
is tested by writing 0000h, 5555h, and 0FFFFh into
every location and reading it back. The test will loop
through all locations and give a ‘*’ prompt if no errors
occur. If an error occurs, the location of the error will
be reported along with the value written and the value
returned. Both RAM banks can be tested by issuing
the ‘T’ command in slow mode (i.e., after a reset) and
again in fast mode (i.e., after a ‘G’ command).

*t MEMORY TEST

ERROR LOCATIONS:
FFFF 5555 D004
FFFE 5555 D004
FFFD 5555 D004
etc.......

Sine/Cosine table
In versions of the Monitor prior to Version 2.17, the
sine/cosine table located in EPROM was copied to
RAM memory when the ‘G’ command was issued.
Beginning with Version 2.17, although the table is still
in EPROM, it is no longer copied to RAM. This 1)
frees up some Monitor code area 2) eliminates the
possibility the sin table will write over code the user
loads, and 3) allows user to locate the sin table in data
memory which is the place he will really need it.

The table in EPROM is a 540 degree, 0.25 degree step,
sine/cosine table is located in EPROM from 767Fh to
7EEFh and is scaled by 2^15. Sine begins at 767Fh,
cosine begins at 77E7h.

To copy this table to your program’s data space, we
must play a little trick on the DSP-93. When a user
program is running, the EPROM is switched out of
the memory space and RAM is used for both program
and data memory. To get access to the EPROM from
a running program, the XF bit must be toggled, a code
fragment to copy the data from EPROM to RAM
copied to memory bank B0, then B0 switched to
program memory and the data copy code executed.
Note that the same process of loading B0 then
branching to B0 after the loading and switch to high
speed can be used to run code out of internal program
memory, so as to achieve maximum speeds.

Code to copy the sine/cosine table to the user
program’s program memory follows. There is also a
call to PM_BLK_MV to copy the block from program
memory to the program’s data memory.

DSP-93 Programming Guide Page 9 of 30 First Printing 6/1/95

ROM_START .EQU 767fh ; Start address in Program (EPROM) to copy from
ROM_END .EQU 7eefh ; End address in Program (EPROM) to copy from
RAM_START .EQU 4000h ; Start address in RAM to copy to
LENGTH .EQU ROM_END-ROM_START+1 ; number of words to copy

B0DADDR .EQU 200h ; Pointer to B0 in data
B0PADDR .EQU 0FF00h ; Pointer to B0 in program

...

BEGIN
 LDPK USER_PAGE
 CNFD ; B0 is data memory

; Move BLOCKMOVE code to page B0 (data)
 LARP AR0 ; AR0 indirect addr pointer
 LRLK AR0,B0DADDR ; point AR0 to block B0
 RPTK BLOCK_END-BLOCKMOVE-1 ; repeat
 BLKP BLOCKMOVE,*+; move blockmove function
; BLOCKMOVE is now in B0 (data)
 CNFP ; B0 is program memory
; BLOCKMOVE is now in B0 (program)

 B B0PADDR ; a branch to the moved BLOCKMOVE

; Data copied from EPROM ROM_START is now in program RAM at RAM_START

RESUME

; ==
; Move a block of data from PROG MEM to DATA MEM
; ==

 LDPK USER_PAGE
 LARP AR1
 LRLK AR1,RAM_START ; Start of new location in DATA
 LALK RAM_START ; Start of block in Program memory
 SACL 063h ; 063h of page 8, Start of block
 LALK RAM_START+LENGTH-1 ; End of block in Program memory
 SACL 064h ; 064h of page 8, End of Block
 LDPK BASE_PAGE
 CALL PM_BLK_MV

...

BLOCKMOVE
 SXF ; XF bit ON to put EPROM in program memory
 LRLK AR1,LENGTH-1 ; set AR1 to length
 LRLK AR0,RAM_START ; point AR0 to destination
 LARP AR0 ; AR0 indirect addr pointer
 LALK ROM_START ; set ACC to source address
BLOOP TBLR *+,AR1 ; move data
 ADDK 1 ; increment ACC (source address)
 BANZ B0PADDR+BLOOP-BLOCKMOVE,*-,AR0 ; fixed-up address
 RXF ; XF bit off to make data RAM into Prog RAM
 B RESUME
BLOCK_END

DSP-93 Programming Guide Page 10 of 30 First Printing 6/1/95

The Parts of a DSP-93 Program
One of the best ways to learn DSP-93 programming
is to read, study, and understand existing programs.
A lot of source code is provided on the system
diskettes. Use this valuable resource.

Not every program will use all these parts, and not
all that do use them will use them exactly as shown.
If they did, there would be only one program!

Header (Instructions, Copyrights, Disclaimers, etc.)
It’s a good idea to have a header the tells what the
program is, how to assemble and execute it, who
wrote it and a Copyright and Disclaimer statement.
See the sample program for more examples.

Example:

; Experimental modem
;
; To assemble, use the command
; “asm expmodem.asm -dRn -dGn”
; where Rn is R1 or R2 for radio ports 1 or 2
; and
; where Gn is one of G0, G1, G2, G3, G4, G5,
; or G6 to set the gain
;
; Copyright © 1995 Ronald G. Parsons W5RKN
;

The Include Files
There are currently five include files that define most
of the constants that you will use when programming
the DSP-93. It is strongly encouraged that all programs
include these files and use the constants therein. This
will make your program easier to understand, and
will reduce programming errors. These files are:

—————————————————————————————————————
; Module Name:
; MACROS.INC
; Purpose:
; * This macro defines the origin in the
; * code segment that the initialized data
; * is to begin.
;
; * This macro defines storage in the code
; * segment while also creating a symbol
; * representing the location the data will
; * reside in data memory after an
; * initialization block move.
;

—————————————————————————————————————
; Module Name:
; MONITOR.INC
; Purpose:
; This file defines the DSP-93 Monitor
; functions and addresses. Symbolic names
; for all of the entry points have been
; assigned. This file should be used
; instead of the absolute addresses since
; a linker does not exist. The file may
; also contain any macros defined in the
; future that can help in using the
; Monitor functions.
—————————————————————————————————————
; Module Name:
; PORTS.INC
; Purpose:
; This file defines the DSP-93 I/O ports
; and I/O bits. The file assigns symbolic
; names for each of the ports and bits.
; The user should make use of the TASM
; bitwise AND (&) and OR (|) operators to
; manipulate the bits. The programmer is
; discouraged from using hex values in
; programs, as other users may have to
; read the listings, and the symbolic
; names assign greater meaning to the code.
—————————————————————————————————————
; Module Name:
; SERIAL.INC
; Purpose:
; Define symbols used in configuring the
; serial port for the DSP-93. The symbols
; in this file describe the 16550 UART.
; Programmers should use this file instead
; of using magic numbers in their programs.
—————————————————————————————————————
; Module Name:
; REGS.INC
; Purpose:
; This file defines the register
; replacements for the TASM assembler. The
; register file AR0 through AR7 are
; defined as well as the memory mapped
; registers defined by the processor.
—————————————————————————————————————

The following lines of code should be in your source
after the header:

 .NOLIST
#include “MACROS.INC”
#include “REGS.INC”
#include “PORTS.INC”
#include “MONITOR.INC”
#include “SERIAL.INC”
 .LIST

DSP-93 Programming Guide Page 11 of 30 First Printing 6/1/95

Memory Location Equates
Storage variable locations in internal and/or external memory must be defined in your program.
These variables are defined using an .EQU directive to assign values to labels.

For example:
; global variables
BUFI .EQU 060h ; AIO input buffer
BUFO .EQU 061h ; AIO output buffer
DO .EQU 062h ; data output buffer

Program Constant Equates
Constants used in your program should be assigned a label and that label be given a value
using an .EQU directive. It is strongly encouraged that all programs use labels for constants
rather that using constants in the body of the program. Note use of the CMDA_VAL macro
below.

For example:
CMDA .EQU CMDA_VAL(6) ; AIO load RA/TA = 6 for SCF @ 833.333 kHz
CMDB .EQU CMDB_VAL(20) ; AIO load RB/TB = 20 for 41,666 samples/
sec

; AIO cofig: A/D gain 2, sync, no HPF or sin corr
CMDC .EQU AIO_CONFIG|AIO_GAIND71|AIO_GAIND60|AIO_SYNC

TOP .EQU 10000 ; ramp top value

Program Origin
The TASM assembler does not, by default, set the DSP-93 starting address of 1000h. So be sure
to include the directive:

; TASM does not assume the necessary 1000h starting address
 .ORG 1000h

Interrupt Vectors
The first four instructions of the program handle the various interrupt vectors and must branch
to the appropriate labels. The Timer and Trap interrupts will not occur in the DSP-93 programs
so they branch to the program starting label GO. Program execution begins at 1008h, just
following the TRAP interrupt vector.

 ; Define Vectors
 B GO ; branch to program start (TINT) Timer
 B RINT ; AIO receive interrupt service routine
 B XINT ; AIO transmit interrupt service routine
 B GO ; branch to program start (TRAP)

GO DINT ; program starts here

DSP-93 Programming Guide Page 12 of 30 First Printing 6/1/95

Initialization of the Math, Serial and Memory Model
There are various parameters for specifying how mathematical operations, the DSP chip serial IO and memory
models will be handled. Your program should set these values at the beginning of the program.

For example:
;
; Initialization
;
GO DINT ; disable interrupts

MATH_INI
 SSXM ; set sign extension mode
 SOVM ; saturate on overflow
 SPM 0 ; set P shift = 0

 CNFD ; on-chip RAM configured as data memory
 SFSM ; frame sync SIO to AIO
 RTXM ; make FSX a CPU input

Initialization of the AIO
The initialization of the AIO chip is probably the most confusing aspect of DSP-93 programming. However,
using the recipes below should enable you to start the chip sampling at the rate you desire without problem.

The AIO chip is reset and enabled by manipulating the IO data lines D15 and D14. In doing so, the variable
CFG in which the value to be output to the RADIO_GAIN port must be in external memory, i.e. page 8 or
greater. I would suggest copying the following code and defining constants in your program for appropriate
values of GAIN and REC_IN, the software selectable gain and radio port.

 LDPK USER_PAGE ; data mem page 8 (external)

AIO_RST LALK AIO_RESET|GAIN|REC_IN
 ; D14 low to reset AIO
 ; D15 high to tri-state lines to/from AIO
 ; Set gain and radio port
 SACL CFG ; store in AIO CFG buffer
 OUT CFG,RADIO_GAIN ; OUT to config port

 CALL WAIT4 ; delay 100 ms

AIO_INI LALK LED_202|GAIN|REC_IN ; LED 202 on
 ; D14 low to reset AIO
 ; D15 low to enable DR & DX to CPU
 ; Set gain and radio port
 SACL CFG ; store in AIO CFG buffer
 OUT CFG,RADIO_GAIN ; OUT to config port

 CALL WAIT4 ; delay 100 ms

AIO_ENA LALK AIO_ENABLE|GAIN|REC_IN
 ; D14 high to end AIO reset pulse
 ; D15 low to enable DR & DX to CPU
 ; Set gain and radio port
 SACL CFG ; store in AIO CFG buffer
 OUT CFG,RADIO_GAIN ; OUT to config port

 CALL WAIT4 ; delay 100 ms

DSP-93 Programming Guide Page 13 of 30 First Printing 6/1/95

Immediately after resetting and enabling the AIO chip, it must be configured to
specify the AIO gain, sync, filters and the values of RA/TA and RB/TB which set the
sample conversion frequency. See “AIO Port Programming, Setting the AIO
conversion frequency” below. I would suggest copying the following code and
defining constants in your program for appropriate values of CMDA, CMDB and
CMDC. See Program Constant Equates example above.

;
; AIO CONFIG
;
 LDPK BASE_PAGE ; data mem page 0 (internal)

 LALK IMR_XINT ; mask SIO TX interrupt active
 SACL IMR ; store INT mask

 ZAC ; zero A
 SACL BUFO ; store in BUFO

 EINT ; enable TX interrupt
 IDLE ; wait for TX interrupt

 LALK AIO_CONFIG ; load AIO command flag
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 LALK CMDC ; load AIO config command
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 LALK AIO_CONFIG ; load AIO command flag
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 LALK CMDB ; load TB/RB AIO command next
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 LALK AIO_CONFIG ; load AIO command flag
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 LALK CMDA ; load TA/RA AIO command last!!
 SACL BUFO ; store in BUFO
 IDLE ; wait for TX interrupt

 DINT ; disable interrupts
 LALK IMR_RINT ; mask SIO RX interrupt active
 SACL IMR ; store mask in IMR

DSP-93 Programming Guide Page 14 of 30 First Printing 6/1/95

Initialization of the DSP
The initialization of the DSP consists of initializing of any program values your program may use.
For example:

DSP_INI ZAC ; zero A

 SACL DO ; zero buffer
 SACL SO ; zero buffer

Handling Interrupts
The transmit and receive interrupts, generated by the AIO chip, must be handled by your code. This
requires two functions RINT and XINT, pointed to by the interrupt vectors at the beginning of your
program. Data received from the AIO are stored in the variable BUFI and processed, in this example,
by the function DSP. Data to be sent to the AIO is stored in the variable BUFO and will be processed
when a transmit interrupt occurs.

RINT LAC DRR ; get received AIO data sample from DRR
 SACL BUFI ; store DDR in AIO input buffer
 CALL DSP ; call DSP process
 EINT
 RET

XINT LAC BUFO ; get data from AIO output buffer
 SACL DXR ; store data in DXR to transmit to AIO
 EINT
 RET

TINT and TRAP interrupts can be handeled in the same way.

Serial Port IO and Exiting to the Monitor
If your program is to read the DSP-93’s Serial Port while executing, the following function will provide
that capability. The function should be called from someplace in your code that is executed repeatedly.
The character read is returned in the variable CHARREAD. If no character was available, ACC will be
zero upon return.

In any case, to be a user-friendly DSP-93 program, include this function always. If an upper- or lower-
case R is sent to the DSP-93 Serial Port, the program will exit to the Monitor.

;
; This is a modification of the ROM based INBIT code that is used to
; reset if a ‘R’ is received, or to return if no key is waiting.

CK_SERIAL
 LALK UART_SEL_LSR ; Select the line status register
 SACL CHARREAD ; Use temp memory
 OUT CHARREAD,UART_CTRL ; Select the register to read
 ZAC
 ZAC

 IN CHARREAD,UART_READ ; Get the Line CTRL on SIO (get the selected reg)
 LACK UART_LSR_RBF ; Set bit for receiver holding register
 AND CHARREAD ; Test the 0th bit Line CTRL
 BZ CK_RET ; Receive Holding Register (not) Empty

DSP-93 Programming Guide Page 15 of 30 First Printing 6/1/95

 ZAC
 SACL CHARREAD
 OUT CHARREAD,UART_CTRL
 IN CHARREAD,UART_READ
 LAC CHARREAD
 ANDK 05Fh ; match upper or lower case
 SUBK ‘R’ ; Reset DSP-93
 BZ RESET
CK_RET
 RET ; Continue

Wait Functions
There are two “wait” routines in the Monitor (See MONITOR.INC). There are also three
“wait” functions that are commonly included in DSP-93 programs. These have delays of:

WAIT4 104 msec
WAIT2 52 msec
WAIT1 26 msec

WAIT4
 CALL WAIT2
 CALL WAIT2
 RET

WAIT2
 CALL WAIT1
 CALL WAIT1
 RET

WAIT1 LARK AR2,0FFh
WAIT_A LARK AR3,0FFh
WAIT_B LARP AR3
 BANZ WAIT_B ; Loop through count
 LARP AR2
 BANZ WAIT_A ; Loop through count
 RET

Defining Data Tables
Tables of data such as filter coefficients, strings, etc. may be defined within your program.
For example:

 .MSFIRST
;
; Initialization table. This is used to configure the AIO at initial
; startup.
;
INITAB .WORD 3 ; 0 load AIO configuration
 .WORD CFGC ; 1
 .WORD 3 ; 2 load TB register
 .WORD CFGB ; 3
 .WORD 3 ; 4 load TA register
 .WORD CFGA ; 5
 .WORD 0 ; 6 terminator

DSP-93 Programming Guide Page 16 of 30 First Printing 6/1/95

Using Pre-defined Data Tables
There are two tables of waveforms provided with the DSP-93 source code. For example:

; ——————————— waveform tables ————————————-
;
; Converts phase position (0..255) to amplitude of that phase position
;
; Contains 4 tables, each 256 words long.
;
; Table 0 = Sine(theta) scaled by 2^15
; Table 1 = Triangle(theta)
; Table 2 = Square(theta)
; Table 3 = Sawtooth(theta)

 .MSFIRST

WTABLE ; address of wavetable data in memory

#include “wavetabl.dat”

; ——————————— sin/cos tables ————————————-
;
; Sin/Cos table. 0..511 is Sin(theta), 512 words = 2 PI
; 64..639 is Cos(theta), 512 words = 2 PI
;
; 512 words long for each table, total 640 words long
; The table is scaled by 2^11

 .MSFIRST

CTABLE ; Sin/Cos() table, 512 words = 2 PI

#include “sinco512.dat”

The End
Don’t forget the following directive at the end of your program.

 .END ; end of program

DSP-93 Programming Guide Page 17 of 30 First Printing 6/1/95

AIO Por t Programming

Setting the AIO conversion frequency
The AIO conversion frequency (sampling frequency) is set during the AIO configuration. There are two
values that determine the conversion frequency, TA and TB. The conversion frequency (in Hertz) is:

10,000,000
2 • TA • TB

The values are most easily set using the macros CMDA_VAL and CMDB_VAL.

CMDA .EQU CMDA_VAL(6) ; AIO load RA/TA = 6 for SCF @ 833.333 kHz
CMDB .EQU CMDB_VAL(20) ; AIO load RB/TB = 20 for 41,666 samples/sec

See “Linear Circuits; Data Conversion, DSP Analog Interface, and Video Interface; Data Book Volume
2” for more information on setting the conversion frequency. The AIO chip has a specified upper limit
on the conversion frequency of 19.2 kHz, but the chip will operate considerably in excess of this. For
example, the 9600 bps FSK modems use a conversion frequency 41666 Hz.

A table of conversion frequencies for various TA and TB is on the following page.

DSP-93 Programming Guide Page 18 of 30 First Printing 6/1/95

zH >—BT

AT 52 42 32 22 12 02 91 81 71 61 51 41

52 0008 3338 6968 1909 4259 00001 62501 11111 56711 00521 33331 68241

42 3338 1868 8509 0749 1299 71401 56901 47511 55221 12031 98831 18841

32 6968 8509 2549 1889 25301 07801 24411 77021 88721 78531 39441 82551

22 1909 0749 1889 13301 32801 46311 26911 62621 96331 50241 25151 43261

12 4259 1299 25301 32801 83311 50911 13521 82231 60041 18841 37851 70071

02 00001 71401 07801 46311 50911 00521 85131 98831 60741 52651 76661 75871

91 62501 56901 24411 26911 13521 85131 05831 02641 08451 74461 44571 79781

81 11111 47511 77021 62621 82231 98831 02641 23451 04361 16371 91581 14891

71 56711 55221 88721 96331 60041 60741 08451 04361 10371 28381 80691 80012

61 00521 12031 78531 50241 18841 52651 74461 16371 28381 13591 33802 12322

51 33331 98831 39441 25151 37851 76661 44571 91581 80691 33802 22222 01832

41 68241 18841 82551 43261 70071 75871 79781 14891 80012 12322 01832 01552

31 58351 62061 22761 38471 51381 13291 34202 86312 42622 83042 14652 37472

21 76661 16371 61181 93981 14891 33802 03912 84132 01542 24062 87772 26792

11 28181 93981 36791 16602 54612 72722 32932 35252 83762 90482 30303 86423

01 00002 33802 93712 72722 01832 00052 61362 87772 21492 05213 33333 41753

9 22222 84132 55142 35252 55462 87772 04292 46803 08623 22743 73073 38693

8 00052 24062 47172 90482 26792 05213 59823 22743 56763 36093 76614 34644

7 17582 26792 65013 86423 41043 41753 49573 38693 71024 34644 91674 02015

6 33333 22743 23263 97873 38693 76614 06834 69264 02094 38025 65555 42595

5 00004 76614 87434 55454 91674 00005 23625 65555 42885 00526 76666 92417

4 00005 38025 84345 81865 42595 00526 98756 44496 92537 52187 33338 68298

zH >—BT

AT 31 21 11 01 9 8 7 6 5 4 3 2

52 58351 76661 28181 00002 22222 00052 17582 33333 00004 00005 76666 000001

42 62061 16371 93981 33802 84132 24062 26792 22743 76614 38025 44496 761401

32 22761 61181 36791 93712 55142 47172 65013 23263 87434 84345 46427 696801

22 38471 93981 16602 72722 35252 90482 86423 97873 55454 81865 85757 636311

12 51381 14891 54612 01832 55462 26792 41043 38693 91674 42595 56397 840911

02 13291 33802 72722 00052 87772 05213 41753 76614 00005 00526 33338 000521

91 34202 03912 32932 61362 04292 59823 49573 06834 23625 98756 91778 975131

81 86312 84132 35252 87772 46803 22743 38693 69264 65555 44496 39529 988831

71 42622 01542 83762 21492 08623 56763 71024 02094 42885 92537 93089 950741

61 83042 24062 90482 05213 22743 36093 34644 38025 00526 52187 761401 052651

51 14652 87772 30303 33333 73073 76614 91674 65555 76666 33338 111111 766661

41 37472 26792 86423 41753 38693 34644 02015 42595 92417 68298 840911 175871

31 68592 15023 56943 26483 53724 77084 54945 30146 32967 45169 502821 803291

21 15023 22743 97873 76614 69264 38025 42595 44496 33338 761401 988831 333802

11 56943 97873 22314 55454 50505 81865 53946 85757 90909 636311 515151 372722

01 26483 76614 55454 00005 65555 00526 92417 33338 000001 000521 766661 000052

9 53724 69264 50505 65555 82716 44496 56397 39529 111111 988831 581581 877772

8 77084 38025 81865 00526 44496 52187 68298 761401 000521 052651 333802 005213

7 54945 42595 53946 92417 56397 68298 140201 840911 758241 175871 590832 341753

6 30146 44496 85757 33338 39529 761401 840911 988831 766661 333802 877772 766614

5 32967 33338 90909 000001 111111 000521 758241 766661 000002 000052 333333 000005

4 45169 761401 636311 000521 988831 052651 175871 333802 000052 005213 766614 000526

DSP-93 Programming Guide Page 19 of 30 First Printing 6/1/95

IO Port Programming

Which Port does What

The TMS320C25 has 16 IO ports, many of which are implemented in the DSP-93. Data is
written to an IO port with the OUT instruction and read with the IN instruction. For example:

 OUT CHARREAD,UART_CTRL
 IN CHARREAD,UART_READ

where in these examples, the data are sent from (read into) the variable CHARREAD and
written to the IO port UART_CTRL or read from the port UART_READ. The ports are defined
by the labels:

PORT_00h .EQU 0 ; Not defined for basic system
UART_WRITE .EQU 01h ; UART Write
HS_CLOCK .EQU 02h ; HIGH SPEED CLK & H_AIO
UART_CTRL .EQU 03h ; UART CONTROL REGISTER
AIO_SELECT .EQU 04h ; H_AIO SELECT OUTPUT
UART_READ .EQU 05h ; UART READ (READ ONLY)
TNC_OUTPUT .EQU 06h ; TNC OUTPUT
RADIO_GAIN .EQU 07h ; RADIO PORT SELECT AND GAIN & AIO ENABLE
PORT_08 .EQU 08h ; Not defined for basic system
PORT_09 .EQU 09h ; Not defined for basic system
TNC_INPUT .EQU 0Ah ; TNC INPUT (READ ONLY)
RADIO_CTRL .EQU 0Bh ; RADIO PORT DIGITAL CONTROL
PORT_0C .EQU 0Ch ; Not defined for basic system
PORT_0D .EQU 0Dh ; Not defined for basic system
PORT_0E .EQU 0Eh ; Not defined for basic system
PORT_0F .EQU 0Fh ; Not defined for basic system

DSP-93 Programming Guide Page 20 of 30 First Printing 6/1/95

Hardwar e Port IO Assignments
[Bob Stricklin, N5BRG]

The following hardware port assignments are used by the DSP-93. These assignments are
identified and labeled in an include file named PORTS.INC. When interfacing with any of
the ports you should include this file with your code and use the labels provided. There is
little chance you may damage the DSP-93 when writing code but if you error in assign port
information and execute the code you may key your transmitter if it is connected. This may
cause injury to you or damage to your equipment.

PORT CONNECTIONS AND PROGRAM ASSIGNMENTS

PORT 00h
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 01h UART WRITE
 CODE CONNECTION NAME DESCRIPTION
 D7-D0 U212-1-U212-8 SIO_TX SIO TRANSMIT BYTE (8 BIT)
 D8-D15 Not defined

PORT 02h HIGH SPEED CLK & H_AIO
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 03h UART CONTROL REGISTER
 CODE CONNECTION NAME DESCRIPTION
 D0-D7 Not defined
 D8-D9-D10 A0-A2 on U212 UART control registers
 D11-D15 Not defined

PORT 04h H_AIO SELECT OUTPUT
 CODE CONNECTION NAME DESCRIPTION
D3 D2 D1 D0
 X X X 1

PORT 05h UART READ (READ ONLY)
 CODE CONNECTION NAME DESCRIPTION
 D7-D0 U212-1-8 SIO_RD SIO READ BYTE (8 BIT)
 D8-D15 Not defined

PORT 06h TNC OUTPUT
 CODE CONNECTION NAME DESCRIPTION
 D11 D10 D9 D8
 X X X 1 TNC-1 *CDI TNC *CDI AND LED L215
 X X 1 X TNC-6 *KEYI TNC *KEY I AND LED L216
 X 1 X X TNC-10 *KEYI TNC *KEY I AND LED L217
 1 X X X TNC-9 CTSI TNC CTS I

 CODE CONNECTION NAME DESCRIPTION
 D15 D14 D13 D12
 X X X 1 TNC-11 XCLKI TRANSMIT CLOCK
 X X 1 X TNC-13 RCLKI RECEIVE CLOCK
 X 1 X X TNC-17 RDI RECEIVE DATA
 1 X X X TNC-20 TDI TRANSMIT DATA

DSP-93 Programming Guide Page 21 of 30 First Printing 6/1/95

PORT 07h RADIO PORT SELECT AND GAIN & AIO ENABLE
CODE CONNECTION NAME DESCRIPTION
 D2 D1 D0
 0 0 0 I/O201 PIN 3 AUX IN AUXILIARY AUDIO IN RADIO 1
 0 0 1 I/O202 PIN 3 AUX IN AUXILIARY AUDIO IN RADIO 2
 0 1 0 Jx03 PIN 14 AUX #2 AUDIO BUSS #2
 0 1 1 Jx03 PIN 12 AUX #1 AUDIO BUSS #1
 1 0 0 I/O202 PIN 5 XMIT 2 TRANSMIT MONITOR RADIO 2
 1 0 1 I/O201 PIN 8 REC IN RECEIVE AUDIO RADIO 1
 1 1 0 I/O201 PIN 5 XMIT 1 TRANSMIT MONITOR RADIO 1
 1 1 1 I/O202 PIN 8 REC IN RECEIVE AUDIO RADIO 2
 D5 D4 D3
 0 0 0 FEEDBACK GAIN= Use MEASGAIN to determine your
 0 0 1 FDBK R201 GAIN= units gain.
 0 1 0 FDBK R204 GAIN=
 0 1 1 FDBK R205 GAIN=
 1 0 0 FDBK R206 GAIN=
 1 0 1 FDBK R207 GAIN=
 1 1 0 FDBK R208 GAIN=
 1 1 1 FDBK R203 GAIN=MAX
 D7 D6
 X 1 U215-10 L212 PANEL LED 212
 1 X U215-11 L211 PANEL LED 211
 D14 U210-9 *AIO_EN ENABLE FOR AIO DR & DX SIO
 D15 U208-2 *AIO_RST Reset for AIO converter (*RESET)

PORT 08h
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 09h
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 0Ah TNC INPUT (READ ONLY)
 CODE CONNECTION NAME DESCRIPTION
 D11 D10 D9 D8
 X X X 1 TNC-2 CDO TNC *CD O
 X X 1 X TNC-5 RTSO TNC *RTS O
 X 1 X X TNC-8 TNC PIN 8
 1 X X X TNC-7 CONNO TNC CONN 0

D15 D14 D13 D12
 X X X 1 TNC-14 RCLKO REC CLOCK
 X X 1 X TNC-16 XCLKO TRANSMIT CLOCK
 X 1 X X TNC-18 RDO RECEIVE DATA
 1 X X X TNC-19 TDO TRANSMIT DATA

DSP-93 Programming Guide Page 22 of 30 First Printing 6/1/95

PORT 0Bh RADIO PORT DIGITAL CONTROL
 CODE CONNECTION NAME DESCRIPTION
 D2 D1 D0
 X X 1 I/O201 PIN 2 *PTT PUSH TO TALK RADIO 1
 X 1 X I/0201 PIN 7 *FREQ UP FREQUENCY TUNE UP PULSE
 1 X X I/0201 PIN 1 *FREQ DN FREQEUNCY TUNE DOWN & 470 TO PIN 6
 1 X X I/0201 PIN 4 *ICOM 470 OHM RESISTOR TO PIN 5
 D5 D4 D3
 X X 1 I/O202 PIN 2 *PTT PUSH TO TALK RADIO 2
 X 1 X I/0202 PIN 7 *FREQ UP FREQUENCY TUNE UP PULSE
 1 X X I/0202 PIN 1 *FREQ DN FREQEUNCY TUNE DOWN & 470 TO PIN 6
 1 X X I/0202 PIN 4 *ICOM 470 OHM RESISTOR TO PIN 5
 D7 D6
 1 X U215-13 L214 PANEL LED L214
 X 1 U215-12 L213 PANEL LED L213

PORT 0Ch
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 0Dh
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 0Eh
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

PORT 0Fh
 CODE CONNECTION NAME DESCRIPTION
 D15-D0 NOT DEFINED FOR BASIC SYSTEM

DSP-93 Programming Guide Page 23 of 30 First Printing 6/1/95

Debugging DSP-93 Programs

Debug functions in the Monitor
[Bob Stricklin, N5BRG]

The Monitor ROM includes a debug routine developed by Tom McDermott, N5EG. This routine
can be called as a development aid when you are generating new DSP code or if you are just
studying existing code. To use the routine include the MONITOR.INC file at the beginning of a
program you are assembling with the following statement:

#include “MONITOR.INC”

The MONITOR.INC file has three key statements which are used by a call to the debug routine. The
statements are:

DEBUG .EQU 0400h ; Start of N5EG Debug Routine

This establishes the label DEBUG in your program. With this in place you can issue a CALL DEBUG
in your program to use the DEBUG routines.

DEBUGPC .EQU 007Eh ; Pass Counter used by CALL DEBUG

This statement establishes a memory pointer. DEBUGPC should be referred to as the passcount/
mode value. DEBUG assumes this memory pointer will be located in page eight (8). You must store
a value at this memory location before calling debug. The value tells debug how you want it to
work. Here are the possible values to store:

 = 0 : causes the debug to trap always.
 = n : value gets decremented by one each call, it stops
 decrementing at zero and causes debug trap.
 = 0FFFFh : causes the debug to trap always, then waits for
 keyboard input (any key) to continue.

DEBUGML .EQU 007Fh ; Starting data memory location used by CALL DEBUG

This statement also establishes a memory pointer. DEBUG assumes this memory pointer will be
located in page eight (8) also. The pointer is for the first of eight memory locations which will be
sent to the serial port. This will be handy if you want to watch some of your memory variables
change as your program executes.

Debug uses the AR7 register as holding location for the current memory stack pointer. The Monitor
places a value of 0AFFh in this register for the beginning of the stack location. The stack will be
utilized by moving down towards 0h. The debug routine uses only a few of the memory stack
locations, about 25, when it is called. Since AR7 is used to hold the location of stack you can not use
it in your program if you intend to call debug.

You can see an example illustrating the assembly code used to call debug by reviewing the
MON_TST.ASM routine.

DSP-93 Programming Guide Page 24 of 30 First Printing 6/1/95

Here is an example of the output from that routine:

PC=1018 A=00000060 AR= 2000 0EFC FFFF 101A FFFF FFFF FFFF 0AE8
 P=00000000 T=0000 ST0=EE08 ST1=17E0
0060: 0000 0000 0000 0000 0000 33E0 0E08 37E0

On the first line you have the program counter, accumulator, and eight AR registers. On the
second line you see the P, T, ST0 and ST1 registers. On the third line you see the starting target
memory location then the values sorted in eight memory locations starting with the target
and including a total of eight locations. All of this will be lined up a little better in a later
version of the Monitor.

Debugging using LOC.ASM
[Bob Stricklin, N5BRG]

The code in LOC.ASM was developed for finding problems. It may be used to determine
when program execution stops. An author of code which seems to be stopping mysteriously
should integrate this code into his program for testing. Then one of the users with a DSP-93
which hangs may run the modified program and report back with the results. Results can be
reported by dumping memory in the DSP-93 using the Monitor. The memory dump can be
captured and posted for evaluation by the author of the code. If we can determine when the
problem is occurring the solution may also appear.

The program called LOC.ASM included in the LOC.ZIP file. This file may be found in the
DSP-93 area on ftp.tapr.org. The file includes three subroutines for tracking programs while
they execute. The subroutines are included in a program which just flashes LEDs as an example.

The routines included are TRACE, TRACE2, and TRACK.

TRACE writes the program memory location of each CALL which calls TRACE to the DSP-93
serial port. This allows continuous monitoring of the program while it is executing. To use it
add the required code to your program and then add in some CALL TRACE statements. Run
your program.

TRACE2 continuously updates a storage location with the program memory location of the
most recent CALL which called TRACE2. Use this by adding the appropriate code and then
run your program. If your program hangs or you stop it, you can use the Monitor SHOW
command to look at memory location 0474h. This memory location will contain the program
memory address of the last CALL TRACE2 executed. The location 0474h was used in the
example program LOC.ASM but you may want to use a different location.

TRACK keeps a running count of the number of times your program passes a CALL which
calls TRACK. When the CALL TRACK statement is encountered, the TRACK subroutine
increments the value of a memory location which is 3000h higher in memory than the program
memory location of the CALL TRACK statement. Review the assembly listing to determine
the program location for the CALL TRACK statements you want to follow.

As supplied here when you run the LOC program it zeros memory in your DSP-93 from
4000h to 7FFFh. Then it calls TRACK, TRACE, and TRACE2. You will see 1018 start to scroll
on your Monitor. This is the CALL TRACE statement which is being executed. If you review
the listing below you will see this is the location of CALL TRACE2 is 1018.

DSP-93 Programming Guide Page 25 of 30 First Printing 6/1/95

After resetting out of the program you can hit ‘G’ in the Monitor and then ‘S’ then ‘D’ and
enter 0474 to see a four digit hex value. This value is the last CALL TRACE2 executed before
you hit the reset. For example it may be 103F but it could be any of the program address
locations which have a CALL TRACE2.

Now hit the ‘D’ in the Monitor and dump ‘D’ data memory locations 4000 4050. You will see
values in four locations;

4000 0000 0000 0000 0000 0000 0000 0000 0000
4008 0000 0000 0000 0000 0000 0000 0000 0000
4010 0000 0000 0000 0000 0000 0000 0003 0000
4018 0000 0000 0000 0000 0000 0000 0000 0000
4020 0000 0000 0000 0000 0000 0000 0000 0000
4028 0000 0000 0003 0000 0000 0000 0000 0000
4030 0000 0000 0000 0000 0000 0000 0000 0000
4038 0000 0000 0000 0000 0000 0003 0000 0000
4040 0000 0000 0000 0000 0000 0000 0000 0000
4048 0000 0000 0000 0000 0000 0000 0000 0000
4050 0002 0000 0000 0000 0000 0000 0000 0000

The locations are 4016, 402A, 403D, and 4050. These correspond to 1016, 102A, 103D, and
1050 in the test program LOC.ASM. So we can see all but one of the locations was executed
three times and 1050 was only executed two time before the program was reset.

If you use this code you should double check the memory locations used to be sure they do
not conflict with your program. Also make sure the page pointer tracks your code properly
and the ARP register integrity is maintained. In most cases the values are preserved. The test
code assumes your program is less than 3000 words in length. If this is not the case adjust the
starting value up from 4000h.

DSP-93 Programming Guide Page 26 of 30 First Printing 6/1/95

Monitor IO Routines
A collection of Monitor routines which should help speed code development are documented
here. Refer to the file MONITOR.INC included with the release disks for the exact location of
these routines. This file should be included with your program in the following manner:

#include “MONITOR.INC”

An effort was made to preserve the state of the TMS320C25 when one of these routines is
called. The register may change if they are involved in the routine but in most cases the processor
will return with pointers and registers unchanged.

Here is a little more detail on each of the Monitor routines.

GET4HEX and GETVAL16
These two routines are the same. Collects a 16 bit hex value from the serial port. The value
should be presented as four ASCII characters (0 through F digits). The four hex digits are
converted to a sixteen bit HEX word and stored in a single memory location for later use. Look
at MONITOR.INC for the storage location and a suggested label. This memory storage location
is for the current page of memory established by the LDPK instruction.. The LDPK is normally
set to page 8 with the instruction LDPK 8.

GET2HEX
This routine collects an 8 bit hex value from the serial port. The value should be presented as
two ASCII characters (0 through F digits). The two hex digits are converted to an eight bit HEX
word and stored in a single memory location for later use. Look at MONITOR.INC for the
storage location and a suggested label. This memory storage location is for the current page of
memory established by the LDPK instruction.. The LDPK is normally set to page 8 with the
instruction LDPK 8.

GETCHAR
This routine collects an 4 bit hex value from the serial port. The value should be presented as
one ASCII character (0 through F digits). The hex digit is converted to an four bit HEX word
and stored in a single memory location for later use. Look at MONITOR.INC for the storage
location and a suggested label. This memory storage location is for the current page of memory
established by the LDPK instruction.. The LDPK is normally set to page 8 with the instruction
LDPK 8.

HEXOUT
This routine assumes a single HEX digit is stored in the accumulator. This digit is converted to
ASCII and sent to the serial port.

INBIT
Retrieves incoming data from the serial port. Data is placed in the indirect address location
pointed at by AR(ARP).

OUTBIT
Sends the lower 8 bits of AR(ARP) to the serial port. This routine uses memory location 0060h
of the current page for temporary storage. Location 0060h is used to store the UART register
information while the routine is sending the data. The register information from the UART is
used to determine if CTS is set or cleared and if the transmit data buffer is full.

DSP-93 Programming Guide Page 27 of 30 First Printing 6/1/95

OUTBIT2
Sends the lower 8 bits of location 0062h of the current page to the serial port. This routine uses
memory location 0060h of the current page for temporary storage. Location 0060h is used to store
the UART register information while the routine is sending the data. The register information
from the UART is used to determine if CTS is set or cleared and if the transmit data buffer is full.

PRVAL08
The 8 bits in a defined memory location of the current page are converted to ASCII and sent to the
serial port. MSB is sent first. See MONITOR.INC for the proper memory location and label to use
for this routine. This routine uses HEXOUT.

PRVAL16
The 16 bits in a defined memory location of the current page are converted to ASCII and sent to
the serial port. MSB is sent first. See MONITOR.INC for the proper memory location and label to
use for this routine. This routine uses HEXOUT.

RESET
Jump to this location to restart the Monitor.

SD_CRLF
Sends a single carriage return and line feed to the serial port.

SD_STR
Calling this routine with a 16 bit address stored in the current AR(ARP) register will cause a string
to be sent to the serial port. The C-style string should begin at the AR(ARP) memory pointer and
end with 00. Only the lower 8 bits of the memory words will be sent. The string data must be in
data memory space.

Here is an example of a string and the calling routine.

STR1 .string “ D S P - 9 3 T A P R / A M S A T R E V 2 . 1 5”
 .word 00
S_END
LRLK AR0,2000h ; String will be placed here in data memory
RPTK S_END-STR1 ; Number of characters to move
BLKP STR1,*+ ; Moves string from program to data memory
LRLK AR0,2000h ; point to memory location
CALL SD_STR

SP1 through SP10
These routines will send the indicated number of spaces (20 Hex) to the serial port.

MWAIT1 and MWAIT_A
The WAIT routines are shown here. You can enter the routine at MWAIT1 or MWAIT_A with
your own value set for AR2. With a 40 MHz clock the wait from MWAIT1 will be about 32
milliseconds while the wait from MWAIT_A will be about N mS where N is the value in AR2. Use
MONITOR.INC for the entry locations for MWAIT1 or MWAIT_A.

DSP-93 Programming Guide Page 28 of 30 First Printing 6/1/95

MWAIT1
 SST1 MON6 ; Saves ST1 in 65h page 0
 SST MON7 ; Saves ST0 in 66h page 0
 LRLK AR2,020h
 CALL MWAIT_A
 LDPK 0h ; Set page 0
 LST1 MON6 ; Restores ST1 from 65h page 0
 LST MON7 ; Restores ST0 from 65h page 0
 RET
MWAIT_A LRLK AR3,02710h ; 02710h = 10,000
 LARP AR3
WAIT_B BANZ WAIT_B,*- ; Loop through count
 LARP AR2
 BANZ MWAIT_A,*- ; Loop through count
 RET

MP_BLK_MV
This routine will move a block of data memory to program memory. You must provide pointers
to the beginning and end of the block in program memory space and the beginning of the block
in data memory space. This routine would be useful if you are dynamically creating program
code in data memory and need to move it to program space.
;
; ==
; Move a block of data from DATA MEM to PROG MEM
; ==
 LDPK USER_PAGE ; Must save data in page 8
 LARP AR1
 LRLK AR1,NEWMEM ; point to DATA mem start location
 LALK BLK_START ; Start of block in PROG memory
 SACL MON4 ; 063h of page 8
 LALK BLK_END ; Copy all the block in PROG mem down to the end
 SACL MON5 ; 064h of page 8
 LDPK BASE_PAGE ; Must enter in page 0
 CALL MP_BLK_MV

PM_BLK_MV
This routine will move a block of program memory to data memory. You must provide pointers
to the beginning and end of the block in program memory space and the beginning of the new
block in data memory space. This routine would be useful if you want to include a sin table in
your program. Your program would be loaded into the DSP-93 in what will become program
memory. After starting you program you would use this routine to move the table to data memory.
The routine may also be used to move string data from program memory to data memory for
later use. The following example shows how the routine would be called.
;
; ==
; Move a block of data from PROG MEM to DATA MEM
; ==

 LDPK USER_PAGE ; Must save data in page 8
 LARP AR1
 LRLK AR1,NEWMEM ; Start of new location in DATA
 LALK BLK_START ; Start of block in Program memory
 SACL MON4 ; 063h of page 8, Start of block
 LALK BLK_END ; End of block in Program memory
 SACL MON5 ; 064h of page 8, End of Block
 LDPK BASE_PAGE ; Must enter in page 0
 CALL PM_BLK_MV

DSP-93 Programming Guide Page 29 of 30 First Printing 6/1/95

Monitor Memory Usage
The following data memory locations in the current page or absolute location are used by the Monitor.

All the following values are in HEX.
When * is indicated under absolute it means the current AR(ARP) and AR value are used.

APPLICATION INDEXED MEMORY ABSOLUTE REGISTERS
 MEMORY USED

Reset, Initialization 0,1,2,3,4,5,6,7,8,9 0200 - 020E AR0,AR1
& Setup + Non callable 60,61,63,64,65,66,67 0400
Monitor code. 0B00 - 0FFF
 1000 - 100E
 8018 - 801E

FUNCTION PAGE PAGE CURR. ABSOLUTE REGISTERS
 0 8 PAGE MEMORY USED

DEBUG 65,66, 6,60,62, x to 0AFF AR7
 67,68, 7E,7F
 69,6A

MWAIT1 65,66 *+ AR2 & AR3

MWAIT_A *+ AR2 & AR3

PM_BLK_MV 66,67 63,64,65 *+ current

MP_BLK_MV 66,67 63,64,65 *+ current

FUNCTION PAGE CURR. ABSOLUTE REGISTERS
 0 PAGE MEMORY USED

GET2HEX 65,66,67,69,6A, 1,2 none
 6B,6D

GET4HEX 65,66,67,69,6A, 1,2,3 none
 6B,6C,6D,6E,6F

GETCHAR 69,6A,6B,6D 1 none

HEXOUT 69,6A,6B,6D none

HEXIN 69,6A,6D none

INBIT 65,66,6D * current

OUTBIT 65,66,6D * current

OUTBIT2 69,6A,6B,6D none

PRVAL08 65,66,69,6A,6B,6C,6D none

PRVAL16 65,66,69,6A,6B,6C,6D none

SD_STR 69,6A,6D *+ current

SD_CRLF 69,6A,6B,6D none

SP(n) 69,6A,6B,6D none

DSP-93 Programming Guide Page 30 of 30 First Printing 6/1/95

Notes:

Items in [...] are anachronisms and not supported.

ACC is not preserved by the following routines

DEBUG Preserves all register values except AR7 which points to
the stack. Uses stack memory which starts at location 0AFFh and
moves down less than 0FFh.
GET2HEX gets and echos two ASCII, converts to hex into ACC and GET2HEXMEM (2h current page)
GET4HEX gets and echos four ASCII, converts to hex into ACC and GET4HEXMEM (3h current page)
GETCHAR gets and echos one ASCII, converts to hex into ACC and GETCAR_MEM (1h current page)
INBIT gets data into *
HEXIN gets data into ACC
HEXOUT sends data from ACC
OUTBIT2 sends data from ACC [OUTBIT2_MEM (62H page 8)]
OUTBIT sends data from *
PRVAL08 sends data from ACC [PRVAL_MEM (6H current page)]
PRVAL16 sends data from ACC [PRVAL_MEM (6H current page)]
SD_STR send zero-terminated string at * [(sends CRLF after string)]
SD_CRLF sends ASCII CR and LF
SP(n) sends n spaces
MWAIT1 delays 100 msec
MWAIT_A delays (AR2) times 1 msec
PM_BLK_MV block move
PM_BLK_MV block move

Assembling a DSP-93 Program

How to assemble a file using TASM under DOS

If you are using DOS, the command line to assemble a TASM source file, say XXX.ASM, is:

TASM -3225 -lal -g0 XXX.ASM

This will result in a listing file XXX.LST being generated and an object file XXX.OBJ.

For further options when using TASM, see the TASM documentation.

How to assemble a file using D93WE under Windows

See the D93WE Help file for information on using D93WE as a code development environment.

How to assemble a file using DSP-93Control under MacOS

See the DSP-93Control ReadMe file for information on using DSP-93Control as a code development
environment. The assembler available with DSP-93Control is very limited. Only simple programs without
include files may be assembled.

	Introduction
	Books to Read
	Theory of Operation of DSP-93
	 DSP-93 Design 3
	Code Development 3
	 Memory Map 3
	 Memory Mapping
	 Internal Memory (TMS320C25) 4
	External Memory 4
	The DSP-93 Monitor
	 DSP-93 Firmware - Monitor Operation
	Sine/Cosine table
	The Parts of a DSP-93 Program
	 Header 10
	 The Include Files 10
	 Memory Location Equates
	 Program Constant Equates
	 Program Origin
	 Interrupt Vectors
	Initialization of the Math, Serial Model
	Initialization of the AIO
	Initialization of the DSP
	Handling Interrupts
	Serial Port IO and Exiting to the Monitor
	Wait Functions
	Defining Data Tables
	Using Pre-defined Data Tables
	The End
	AIO Port Programming
	Setting the AIO conversion frequency
	IO Port Programming
	Which Port does What
	Hardware Port IO Assignments
	Debugging DSP-93 Programs
	Debug functions in the Monitor
	Debugging using LOC.ASM
	Monitor IO Routines
	GET4HEX, GETVAL16,
	GET2HEX,
	
	INBIT, OUTBIT
	OUTBIT2,
	PRVAL08, PRVAL16,
	RESET,
	SD_CRLF,
	SD_STR,
	SP1 through SP10
	MWAIT1 and MWAIT_A
	MP_BLK_MV,
	PM_BLK_MV
	Monitor Memory Usage
	Assembling a DSP-93 Program
	How to assemble under DOS
	How to assemble under Windows
	How to assemble under MacOS

